The work of engineers is often mission critical, from ensuring that life-saving medical equipment can function properly, to providing infrastructure for 5G communications systems, to monitoring national security and defense. Performing this work from home during a global pandemic with limited access to labs and the essential technology required to do our jobs is the new reality for most engineers. We are navigating a fully-remote working environment, attempting to advance work and accelerate progress, while physically separated from our teams and necessary equipment.

Handling and supporting a remote engineering workforce is untested territory; but, as the work of engineers hinges on testing, monitoring, and calibrating, how we get through this time in individual environments requires new ways of approaching the work we’re accustomed to performing together in labs. While we adapt to the new normal of remote engineering, creative workarounds for common constraints have been developed.

Similar challenges also now face engineering students at universities around the world. Within Electrical and Computer Engineering (ECE) studies, a hands-on and technical discipline that usually requires electronic measurement instrumentation as part of the learning experience, the question of remote learning takes on added complexity.

Want to share a great resource? Let us know at

About the Author:

Wilson Lee is an Education Market Segment Lead at Tektronix, a test and measurement company committed to performance and compelled by possibilities.