As the machines around us become more capable—solving problems and offering advice rather than just retrieving information—our roles as knowledge workers change. New tasks will replace those that have been automated. These smart machines can do more than automate—they can amplify human performance and augment human intelligence, working alongside professionals as partners. In the pharmaceutical industry, for example, AI is helping researchers identify the most promising compounds to test. Robots are being used to grow cells, isolate DNA, and track samples, increasing the capacity to test potential drugs.

However, just because a task is automated does not mean the job goes away. Low-level tasks can be replaced by higher level ones. But this only happens if humans gain the skills needed for those higher-level tasks and adapt to a new division of labor between “man and machine.” At German auto-parts maker Bosch, for example, welders, joiners, and mechanics were trained in basic coding skills to enable them to use robots as tools.

The need for upskilling
It is estimated that one-third of the U.S. workforce will need to learn new skills by 2030, with nearly 10 percent of the workforce taking positions in fields that are unknown today. The magnitude of this reskilling challenge—ensuring that millions of new and existing professionals have the skills to transition to new positions—is massive. With rapid upskilling required often (e.g., every two to five years across a 40- to 50-year career), to what extent will future education look like today’s?

Institutions such as Georgia Tech are thinking of ways that learners can distribute learning experiences across their lives, with multiple “on- and off-ramps.” They envision creating new products and services for a flexible and continuous learning model that may include microcredentials or “minimester” classes, which Georgia Tech describes as courses that meet for three hours per week, lasting five weeks, roughly the equivalent of a one-credit course.

How will #AI, #bigdata & #robotics impact the substance of education?

Future career paths are likely to be based on high-value skills (e.g., problem-solving, critical thinking, teamwork) that are transferable across multiple industries. The diploma as today’s primary credentialing mechanism may be augmented by more discrete approaches such as badges or competency certifications that provide the stackable credentials and “renewable learning” that a rapidly changing environment requires. For example, Northeastern University is using IBM badges as the foundation for professional master’s degrees in areas such as analytics. Georgia Tech’s Commission on Creating the Next in Education plans to explore a decentralized transcript based on blockchain technology.

Even more challenging than courses or credentials is to anticipate what it means to be a professional in a world of smart machines and how to prepare learners for a new division of labor between “man and machine.” We are comfortable using machines for information retrieval or data processing, but we are entering an era of “knowledge processing.” Automated hypothesis generation platforms mine scientific literature and formulate hypotheses to allow researchers to focus on the most promising leads. Similar uses of AI help clinicians gain insights from massive amounts of data, leading to more refined diagnosis and treatment of diseases. Court decisions are predicted by tapping databases of hundreds of thousands of past cases. These intelligent machines develop new knowledge by feeding on data. Problem-solving and discovery are changing with AI, based on large datasets and algorithms. If so, should students develop “data literacy” to help them gather and analyze large datasets or identify poor data or biased algorithms that might lead to dangerous conclusions? While smart machines have tremendous potential, they lack moral capability. Along with “data literacy,” higher ed may need to emphasize ethics so that society can better balance what is possible with what is morally responsible.

Ultimately, AI and robotics may prompt us to re-conceptualize education in a world of lifelong learning and partnerships with smart machines.

About the Author:

Dr. Diana G. Oblinger is president emeritus of EDUCAUSE, a nonprofit association of 2,400 colleges, universities, and education organizations whose mission is to advance higher education through the use of information technology. Previously, Oblinger held positions in academia and business, including the University of North Carolina system, IBM, and Microsoft. She is known for her leadership in information technology, particularly its impact on enhancing learning and improving college readiness and completion. Oblinger has received outstanding teaching and research awards and holds three honorary degrees. She currently serves on the Board of Directors of Ellucian.


Add your opinion to the discussion.