How collaboration is just a modern LMS away

The goals of an LMS-enabled collaboratory, specifically for developmental mathematics and college algebra include:

The ability for online learning

Every student can “come to the board” without ever leaving their seat (or coming to campus).

Which means a STEM-proficient online assessment system

Online assessment is a primary driver in the design of this collaboratory approach, given the high effect size of improvement for effortful practice with testing (Brown, Roediger, & McDaniel, 2014; Hattie & Yates, 2014).

For STEM courses like mathematics that come with a significant reliance of symbolic characters, a system that can accept and assess such information provides valuable fidelity to the discipline, time savings, and a greater volume of student engagement.

WebAssign is a great online assessment system, because it affords the highest symbolic and mathematical fidelity needed for student engagement beyond the standard assessment (e.g., types like multiple choice and true/false). It also comes with high-fidelity symbolic capabilities from Maple, Mathematica, and MATLAB—along with embedding capabilities that enable integration of a variety of publisher’s e-content (e.g., Cengage). This e-content can incorporate technical simulations, e-book materials, and student learning support tools like “Watch it” videos; all applications pertinent to learning mathematics, physics, chemistry, and engineering.

The WebAssign online assessment system also serves as the hub of activity through which students engage and collaborate on items like homework, in class activities, quizzes, exams, video lectures, simulations, and problem-solving.

The ability to write and share

Second to the assessment system in the collaboratory LMS approach is a need to write by students and teacher using digital ink, given the benefits known (Mueller & Oppenheimer, 2014). OneNote, DyKnow, or PencilPad can be used to connect teacher and students’ digital writings with others during engagement activities where symbolic mathematical representations are crucial for increasing the mathematical fidelity of their conceptual understanding.

Collaboratory use with digital inking. Copyright Ohio University.
Collaboratory use with digital inking. Copyright Ohio University.

Problem-solving can be shared in real-time, whether a student is present in-class or attending online, through the use of digital ink. Each student is “coming to the board” to contribute and share their approach in problem solving. This conveyance of digital notes from the teacher and students’ collaboration is shared and saved for all in real-time.

Being able to couple tools like PencilPad and DyKnow on an LMS, a teacher can also ascertain the cognitive fidelity of the student’s work via a recording of the digital inking activity. For example, whether sequences are correct from start to finish or filled with intermittent “false starts” or “tangential efforts,” the writing, erasing, and writing is all there for the teacher to evaluate.

In WebAssign, data collection on a student’s digital writings now includes assessment and insights at the question-, assignment-, and class-level with both quantitative and qualitative data types. Educators can see how much a student writes as a measure of engagement (Kamin, Capitanu, Twidale, & Peiper, 2008), as well as taking what a student digitally writes and analyze it for correctness via computer algorithms (Hatfield, 2010). Two such promising tools are FluidMath, and MyScript.

(Next page: Flipping and high stakes)