Momentum building on STEM education

“Students educated in K-12…move on for more specific training in higher education,” he said. “The colleges and universities have the opportunity to educate these students further, in specific disciplines, so those students are able to participate in health science careers. In addition, colleges and universities affect K-12 education by producing teachers….Further, colleges and universities work with existing teachers, both to provide deeper training in current topics in…STEM education and to receive from those teachers a better understanding of the actual issues that matter in K-12 STEM classrooms.

” Schools must implement rigorous and open learning programs to make STEM teaching effective, Wink said, in addition to having the technology appropriate for teaching what is current and relevant in these fields. And teachers should have thorough training as well, because lack of content knowledge or lack of experience with STEM can limit a teacher’s ability to fully educate students.

With a grant from the National Science Foundation, CPS created CUSP (Chicago Urban Systemic Program), a comprehensive science and math program aimed at reforming the district’s STEM teaching through teacher professional development. Local universities created content-rich courses that enabled teachers to earn state endorsements in mathematics and science. The program ran from 2000 to 2006. Now, most local colleges and universities offer courses that help teachers supplement their teaching certificates with content-based credentials.

“We work with local museums and community groups to create after-school clubs focused on science and mathematics; these programs often provide the spark that ignites a student’s interest in STEM disciplines,” said Michael Lach, teaching and learning officer at CPS. The district also creates student internship programs and other resources, all of which connect students and teachers to real-life STEM professionals.

The percentage of CPS students who met or exceeded science standards on the Illinois Standards Achievement Test (ISAT) increased from 43 percent in 2001 to 63.3 percent in 2006, then fell slightly to 62.6 in 2008.

Just 34.8 percent of CPS students met or exceeded ISAT math standards in 2001, but that figure rose to 64 percent in 2006, 68.6 percent in 2007, and 70.6 percent in 2008.

The subcommittee held a separate hearing on how to further involve girls in STEM learning and activities.

While women are active participants in some STEM disciplines, other areas show room for improvement. According to the National Science Foundation, although women earned more than half of all science and engineering bachelor’s degrees in 2006, they earned only about 20 percent of degrees in engineering, computer science, and physics.

Data from the National Association of Educational Progress reveal a small but persistent gap in performance within STEM education between boys and girls in primary and secondary schools–less than one percent for math and less than three percent for science. Many researchers believe issues such as self-confidence and perceived expectations negatively affect the achievement of girls on standardized tests.

According to 2009 figures from the National Center for Women and Information Technology, just 17 percent of Advanced Placement (AP) Computer Science test-takers in 2008 were female. Girls represented 51 percent of AP Calculus test-takers and 56 percent of overall AP test-takers.

In early June, Sen. Ted Kaufman, D-Del., introduced the STEM Education Coordination Act of 2009. Co-sponsored by Sen. Sherrod Brown, D-Ohio, the bill would ensure that existing STEM education resources are employed efficiently and effectively through greater coordination at the federal level.

The legislation would establish a committee, under the National Science and Technology Council, which would be responsible for coordinating federal STEM education programs and initiatives, including programs under the National Science Foundation and NASA. It also would develop, implement, and update a five-year STEM education achievement plan, including objectives and metrics for assessment, as well as maintaining an inventory of federally sponsored STEM education programs and activities.

The committee would produce an annual report that includes a description of STEM activities and education programs, funding levels for those programs, and progress updates.

Federal officials, as well as officials from other states, will be watching a new effort in Maryland to boost STEM education to see what they might learn.

All Maryland high school graduates would be prepared for college-level math and science courses, and the state’s universities would triple their production of teachers in those fields, under a five-year, $72 million plan unveiled Aug. 6 by a state task force appointed by Gov. Martin O’Malley. The plan also calls for a 40-percent increase in the number of STEM graduates produced by state universities and for a sweeping effort to convert research and development into jobs (see “Maryland plans to boost math, science learning)