What educators can learn from brain research

Immordino-Yang believes this study is important not because it reveals how the brain works, but because it exposes a basic nature that can’t be learned in the classroom alone. “Some things are just below the level of consciousness, so you can’t just ask kids why they perform better at some times and some times they perform worse,” she said.

She also believes her study leads to a basic conclusion that could change traditional educational practices.

“Students are taught that rational decision-making is devoid of all emotions. This is clearly not true,” she said. “If you try to dissociate from your emotions, the worse your decision-making will be. This could be a useful lesson for standardized tests and curriculum makers. Educators should try and help kids analyze their emotions during tests, not put them aside.”

Immordino-Yang notes that her study is not speculation. She tested many different groups of students–a process that took two years and still continues.

The quality and extent of her research has captured the attention of her peers, as well as governors nationwide. Recently, Immordino-Yang visited a University of Texas council that advises governors, and she was a keynote speaker at this year’s Harvard Institute convention, “Connecting the Mind, Brain, and Education,” which ran June 29 to July 3.

Neuro-Education Initiative

Another source for neuroscience and education information is the recently developed Johns Hopkins School of Education’s Neuro-Education Initiative, a program supported by the Johns Hopkins University Brain Science Institute.

In partnership with the School of Medicine and the Kennedy-Krieger Institute, the program’s mission is to foster dialogue among educators and brain science researchers to develop joint research projects.

Mariele Hardiman, co-director of the initiative and assistant dean and chair of the Department of Interdisciplinary Studies, is a former teacher and school principal who realized there wasn’t enough information available to educators on how to successfully process neuroscience research for the classroom.

After publishing her book, Connecting Brain-Research with Effective Teaching: Brain Targeted Teaching Model, she decided to try and connect the hundreds of researchers at Johns Hopkins to the many professors on campus.

“I thought to myself: How can we help these educators, and what new research can be done on their behalf? Wouldn’t it be nice to have educators suggest what they’re interested in, what they’ve noticed, hear their input, and then start constructing research projects? We need to focus on what educators need,” she said.

One of the biggest areas of research the initiative is exploring in more depth is brain plasticity. Hardiman believes this research can have a big impact on teaching, because if teachers know “how the brain works, and how it can adapt, they will begin to look differently at their students,” she said. “Whether they’re older kids, lower-income kids, et cetera, the teachers will know that they don’t have to treat these kids differently. [The students] can adapt and learn just like everyone else.”

Hardiman said the initiative’s research will not stop at plasticity, and many topics have been discussed for the future, such as ideal lesson times, memory, the effects of stress on learning, and more.

The initiative, which began last year, started with a think tank lunch between educators and researchers and has grown into a full conference that launched this past spring.

The inaugural summit was called “Learning, Arts, and the Brain,” and researchers presented findings on how arts training has been associated with higher academic performance. For example, specific links exist between high levels of music training and the ability to manipulate information in both working and long-term memory; these links extend beyond the domain of music training. Also, in children, there appear to be specific links between the practice of music and skills in geometrical representation, though not in other forms of numerical representation.

Researchers say these findings now allow for a deeper understanding of how to define and evaluate the possible causal relationships between arts training and the ability of the brain to learn in other cognitive domains.

The Neuro-Education Initiative also offers educators a Mind, Brain, and Teaching Certificate. This 15-credit graduate certificate is designed for K-12 teachers, administrators, and student-support personnel who seek to explore how neuroscience research informs educational practice. The certificate program started this summer, and online courses will be available in 2010.